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This paper presents a detailed correlation index of health indicators for lithium-ion batteries. Identifying potential correlations of
health indicators is of high importance with regard to the cell selection process and in order to minimize the occurring cell-to-cell
spread within the lifetime. Health indicators that are taken into account are among others impedance measurements of different
pulse lengths, capacity values at different discharge procedures and checkups, weight and initial voltage. The work is based on four
different aging datasets covering variations in cell chemistry (NMC, LFP, NCA), cell type (round, prismatic), as well as the size and
designated application (consumer, automotive). A publicly available dataset was included to allow for an easy reproduction of the
results.
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This paper presents a detailed correlation index of health indicators for lithium-ion batteries. The work

is based on four different aging datasets covering variations in cell chemistry, cell type (round, prismatic)
as well as the size and application (consumer, automotive). A publicly available dataset was included to
allow for easy reproduction of the results.

2 Introduction

Longevity of batteries is benificial and can reduce the total cost of ownership, but it becomes essential
for large automotive and stationary storage systems. Especially in industrial-scale stationary applica-
tions, design lifetimes have to be in the range of 10 to 15 years [1]. The same applies to the emerging
market of marine hybridization. This is compounded by the fact that large stationary and marine stor-
age systems in the MWh range consist of thousands of cells, with the racks of an array connected di-
rectly in parallel on a common DC link. These DC links typically have a high nominal voltage in excess
of 800 volts. In order to avoid large imbalances in the system, three conditions must be met. While uni-
form operating conditions must be ensured at the system level, e.g. through uniform temperature dis-
tribution, the other two conditions must be met at the cell level or in the cell selection process. Firstly,
high quality cells must be used, resulting in a minimum spread of cell-to-cell variation over the lifetime
of the system [2]. Secondly, during the cell selection process, measures must be found to grade the cells
and exclude cells with potentially deviating behavior from the good-to-use cells [3].

In automotive applications, system size is currently limited to a comparatively small size below 100 kWh
[4]. However, as they are mass-produced and cost savings potential should be addressed at both the cell
and system level, direct cell-to-pack architectures such as the BYD Blade are being considered [5]. This
results in a highly individual cell capacity. The disadvantage is that there is no smoothing behavior of
a parallel connection at the cell level. Finally, large-scale systems tend to follow automotive trends in
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order to achieve economies of scale. Therefore, increasing cell capacity can be expected in these applica-
tions as well.

However, there are many factors that can lead to increased inhomogeneities in cell capacity and/or impedance
within a set of battery cells. The most immanent ones, which are addressed in various aging analyses,
are the respective operating conditions such as charge and discharge rates, depth of discharge (DoD) and
mean state of charge (MOS), temperatures, as well as the state of charge during idle periods. In addi-
tion, system integration can have a significant impact. Examples include uneven and/or defective cell
contacts, an improperly designed cooling system or other external thermal influences, and cell bracing

[6, 7]. Finally, there are also production-related effects that result in divergent aging behavior, especially
when mismatched cells are used in the battery pack. These inhomogeneities can be attributed to manu-
facturing tolerances [8, 9] and the formation process, as well as varying conditions during shipping and
storage. Strictly speaking, the latter is a normal calendar aging under different conditions. However,
since it occurs before integration into modules, it must be considered as an initial deviation in the new
state.

In this study we explore the correlation of different health indicators and show the value to inform the
design of experiment with avoiding time consuming tests within a check-up procedure when they do not
give much more information. In addition “free” health indicators without additional testing cost like the
resistance of a reoccurring voltage drop should be used to increase the information from a given test or
cell selection process.

3 State of the Art

The demand for a decent understanding of lithium-ion battery aging at the cell level and its correlated
cell-to-cell variation is a highly addressed topic in battery research. In addition, multiple health indica-
tors can be used as features for machine learning applications [10] or a vector state representation for
overall battery health [11]. In the following, an introduction to state of the art shall be given. As it fo-
cuses mostly on either the understanding of the aging processes itself and their parameter dependency
or the cell-to-cell variations, the state of the art of the two focus areas shall be presented individually,
starting with the aging experiments.

3.1 Aging Experiments and aging evaluation

Lithium-ion batteries are not operating in a thermodynamic-stable region. Thus, they must only be used
in a chemistry-dependent operating window in order to limit degradation due to side reactions that take
place both during usage as well as during storage. Experiments are carried out individually for cyclic
and calendar aging [12]. Yet, at that point, it needs to be noted that the latter is always superimposed
and, therefore, needs to be accounted for also in all cyclic aging experiments [13]. Accelerating factors
that are extensively studied are temperature, state of charge (SoC), depth of discharge (DoD) and C-
rate. Yet, depending on cell shape, further influencing factors such as bracing must not be neglected.
The main corresponding degradation mechanisms are electrolyte decomposition, growth of the solid elec-
trolyte interface (SEI), solvent co-intercalation, content loss of active material, decomposition of binder,
current collector corrosion and cell internal short circuits. An overview of these mechanisms can be found
e.g. in [14, 15]. The degree of impact of the individual mechanisms depends on the severity of the differ-
ent operating factors that are known to accelerate aging, e.g. operation at low temperatures will specifi-
cally enhance SEI growth, whereas overcharge is more associated with a solvent co-intercalation.
Moreover, to draw conclusions from single cell aging in a laboratory environment on the aging on the
system level, one has to take into account various topology-related effects. This is mainly due to the

fact that uneven boundary conditions have to be considered but also — as explained in the next section

— by the distribution of the cell performance itself. With regard to the topology, it can be distinguished
by external factors that have an influence on the individual cells, such as, e.g. temperature spread. Es-
pecially in large systems, a spread of around 3 to 5 degrees Celsius has to be considered realistic under
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operation, yet also higher spreads are reported. Also, cell bracing on module level will add to a certain
difference. The same is true for different current collectors at module interfaces.

These boundary factors can further enhance the effect of the electrical topology. While a parallel con-
nection on the cell level might lead to a natural minimization of cell-to-cell variations, especially a par-
allel interconnection of complete systems comes along with a high potential impact of circulating cur-
rents. An example of that is large stationary storage systems with a nominal voltage level of around 800
volts on rack level that are usually directly connected in parallel on a dc busbar. With several racks be-
ing connected to the common busbar, a slight difference in the individual racks can lead to a high imbal-
ance in the overall load, especially in the operating boundaries. Hence, it can have an aging effect that
one must not neglect. Moreover, the SoC difference that allows for interconnection of the racks needs to
be kept in a narrow window in order to limit the effect.

3.2 Cell-to-cell Variation Analysis

The cell-to-cell variations, already mentioned in the previous section, are a widely known and investi-
gated cell performance and, ultimately, safety-altering issue. These variations are not only caused by
the always, to some extent, differing aging conditions on the system level but also by disparities in the
materials used and their chemical composition, the processing and formation as well as the cell formats
and connectors. There are diverse studies like e.g. [9] with varying amounts of cells analyzing this inho-
mogeneity, often also using complex mapping techniques [16]. The found spread on reaching end-of-life
conditions is tremendous with, e.g. more than 350 full cycle equivalents (FCE) at an average lifetime of
1,100 FCE in the analysis of Baumhofer et al. [9]. The results are backed by further studies such as, e.g.
[17], which found an even higher imbalance. The analysis of Schuster et al. [18] showed that most of the
far outliers age faster than the average.

Yet, for scaling it to the system level and also using it within the online management tools, more inves-
tigations with regard to reproducibility and statistical representation are still required. Especially for
large-scale applications that are more and more to come, especially in stationary applications, this is

an urgent requirement to forecast performance and durability even if the aging spread can be further
minimized by an optimized production process. For more details on the deviation causes as well as an
overview of carried out studies, the authors refer to a recent review by Beck et al. [16].

4 Dataset Description

The following list introduces the testsets which are analyzed in this paper. It gives an overview of the
main testset boundaries. Moreover, it states the identifier used later on in order to distinguish between
the different testsets. The testset of Preger-2020 is available open access and can be found at battery-
archive.org for all considered cell types.

1. Baumhofer-2014 [9] consists of 48 Sanyo/Panasonic UR18650E NMC/carbon 1.85 Ah cells in a
cycle aging test, each under the same operating conditions. The testset is used in the analysis of
initial cell parameters at delivery.

2. Preger-2020 [19], A123 APR18650M1A, 1.1 Ah, 18650; Panasonic NCR18650B, 3.2 Ah, 18650; LG
Chem 18650HG2, 3 Ah, 18650. Used to illustrate the comparison of chemistries.

3. Schoneberger-2019 [20], LiTec HEI40 40 Ah, automotive large-scale pouch cells. The testset is
used in the analysis of calendar and cyclic test conditions.

4. Willenberg-2021 [21], Samsung INR18650-35E, NCA /Graphite cell with nominal capacity of 3.4
Ah cylindrical 18650 type. The testset is used in the analysis of initial cell parameters at delivery.

A comprehensive overview of the cell parameters of the individual testsets according to the respective
datasheets is provided in Table 1. The three different cells used in the openly available dataset by Preger-
2020 are indicated by the numbers one to three — namely LFP (1), NCA (2) and NMC (3). All testsets
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Table 1: Analyzed cells of the individual testsets

Baumhofer-2014  Preger-2014 (1,2,3)  Schoneberger-2019  Willenberg-2021

Manufacturer Sanyo/Panasonic A123 (1) LiTec Samsung
Panasonic (2)
LG Chem (3)

Cell name UR18650E APR18650M1A (1) HEI40 INR18650-35E

NCR18650B (2)
18650HG2 (3)

Number of aged cells 48 28 (1) 13 cycle 183
22 (2) 30 calendar
24 (3)
Cell type 18650 18650 (1,2,3) pouch 18650
Cathode material NMC LFP (1) NMC NCA
NCA (2)
NMC (3)
Nominal Capacity/Ah 1.85 1.1 (1) 40 3.35
3.2 (2)
3(3)
Nominal voltage/V 3.6 3.3 (1) 3.6 3.6
3.6 (2, 3)
Min. voltage/V 2.5 2 (1, 3) 3 2.65
2,5 (2)
Max. voltage/V 4.2 3.6 (1) 4.2 4.2
42 (2, 3)
Max. charge current/A 2.05 4 (1) 80 2
1.625 (2)
6 (3)
Max. discharge current/A 6.15 30 (1) 120 8
6 (2)
20 (3)
Mass/g 45.5 39 (1) 1200 50
48.5 (2)
47 (3)

besides the one of Schéneberger-2019 feature 18650 cells and, thus, consumer cells that are respectively
publicly available. The C-rate in the charge direction is in the range of 0.6 to 3.6 and in the discharge
direction in the range of 1.9 to 27.2. Hence, cells of a substantially differing power capability and, there-
fore, cell structure were analyzed.

As already indicated in the list of testsets, not every analysis is presented for all testsets. Therefore, an
overview of investigated health indicators can be found in Table 2 and the corresponding allocation to
the investigations of each testset is shown in Table 3.
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Table 2: Explanation of the health indicators

Indicator Description

Initial Capacity First measured discharge capacity

Second Capacity Measured discharge capacity at first check-up

Weight Measured cell weight

Initial Voltage Cell voltage at delivery

1kHz impedance 1 kHz impedance measured at delivery

Impedance Impedance determined using different pulse currents (in C-Rates), duration (in seconds) and ob-

served cell SOC (in %). Example ResCHA1C2sec30 is a charge pulse resistance with a current of
1C after 2 seconds at a state-of-charge of 30 %

Capacity-DCH Measured discharge capacity until lower voltage limit is reached

Capacity-CHA Measured capacity of constant current phase (CC) until the upper voltage limit is reached

Capacity-CHA-CV ~ Measured capacity of constant voltage phase (CV) until the current has fallen below a predefined
limit

MeanTemp The mean cell temperature within the test

Table 3: Analyzed health indicators of the individual testsets

Indicator Baumhofer-2014  Preger-2014  Schoneberger-2019  Willenberg-2021
Initial Capacity X X
Second Capacity x X
Weight X
Initial Voltage X
1 kHz impedance X
Impedance X b X

Capacity-DCH be X

Capacity-CHA X b X

Capacity-CHA-CV X

Mean Temp X b

5 Description of the Plots Shown in This Paper

A multi-plot with an even amount of subplots aligned in x- and y-direction, as shown in Figure 1 is used
as the main visual element to analyze the correlation of the health indicators. Its content shall be briefly
introduced. The health indicators, such as, e.g. initial capacity and cell weight, are pairwise combined
by using each health indicator once as a column identifier and once as a row identifier.

As the n-th position in row and column has the same identifier, the identity relationship is shown on

the diagonal from upper left to lower right. It is depicted as a kernel density estimation (KDE) which
smooths the observed values by a Gaussian kernel to a continuous density estimation rather than de-
picting, e.g. the values binned in histograms. The general shape of the KDE allows us to identify the
individual distribution function of a parameter visually and by a goodness-of-fit test. The maxima in-
dicate the most likely values. The y-axis has no meaning for those plots, the values of the KDE add up
to 100% and depict the relative spread of values. Care must be taken when comparing kernel density
estimates between two data sets, as the choice of kernel function and bandwidth can greatly affect the
resulting estimate through the applied smoothing. In addition, KDEs are sensitive to outliers, making
comparisons between datasets with different levels of outliers difficult.

In the upper triangle, the discrete measurement points are depicted in a scatter plot. Clusters and linear
dependencies are visualized by the resulting point clouds. A drawback of scatter plots is that the various
points can overlap and thus become invisible. This is valid, especially for large testsets with pronounced
data pairs. All plots in this work are created with the python library seaborn.
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Figure 1: Explanation of the main depicting scheme of this work. The used multi-plot consists of the kernel density esti-
mation plots on the diagonal from upper left to lower right, the scatter plots in the upper triangle and the bivariate kde
contour plots in the lower triangle.

In the lower triangle, the same combination of health indicators is analyzed but with a reversed x- to y-
axis allocation. Instead of scattering, the bivariate kde contour plot is drawn with each line indicating
the region that contains the value pairs resulting in a density above the line’s threshold. Hence, espe-
cially pronounced areas of a high density can be identified very easily by the plot and the steepness in
the different directions around them.

6 Initial Parameters

6.1 Comparing Initial Parameters

Figure 2 shows the initial capacity and the capacity at the second check-up in Ah, the cell weight in g,
the initial voltage before cycling in V, and a 1 kHz impedance in {2 measured upon arrival from Wil-
lenberg-2021. The 18650 cylindrical cells from Samsung SA35E were bought in three batches in March
2018, November 2018 and November 2019. These batches are depicted in different colors within the scat-
ter plot in order to distinguish between them — namely blue (first batch), orange (second batch) and
green (third batch).
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Figure 2: Correlation of the following initial parameters of the dataset Willenberg-2021: Initial capacity, second capacity
value, cell weight, initial voltage and 1 kHz impedance. Capacities are determined within the check-up procedure, weight,
voltage and impedance are recorded at delivery. Cells were bought in 3 batches, which can be distinguished by the follow-
ing colors: blue (batch 1), orange (batch 2) and green (batch 3).

Batch one shows a higher variation with regard to the initial parameters in general and differs the most
from the other two batches which were purchased at a later point in time. This might be an indication

of changes in the production process, formation or materials used. Hence, it is important to analyze a

cell behavior in detail to rely on cells of a common batch in order to avoid the risk of false correlations.
The same relevance is obviously given in the pack design.

Cells from the first batch showed a lower initial capacity compared to the latter two. The cells showed

a higher impedance while being, on average, around 1 g lighter, which is about 2 % of the cell’s weight
given in the datasheet. Cells within the batches varied below 1 g, while in total, the lightest and heavi-
est cells differed at around 2 g. In the initial voltage at delivery, a batch dependence is also visible. This
can be caused by material differences or differences in storage time since this can reduce the charge within
the battery through calendar aging. Similar differences over the production cycle were reported by Schind-
ler et al. [22]. The initial capacity ranges between 3.3 and 3.4 Ah, with bigger variances observed than
other single datasets, for example, by Kuntz et al. [23] with a mean discharge capacity of 3.328 Ah and

a standard deviation of 0.019 Ah. This can be attributed to a slightly bigger current of 0.3C or batch
dependence. Similar differences over the production cycle are reported, e.g. by Schindler et al. [22]. Kuntz
et al. also observed tighter tolerances within the cell weight with a standard variation of only 40 mg.
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The 1khz impedance varied within the dataset from around 20 to 24 mf), with a strong batch depen-
dence. This resistance is highly temperature sensitive, so it needs to be accounted for when checking at
delivery and cell need to be adjusted to the same temperature.

Figure 3 depicts the initial parameters for the Baumhofer-2014 set. Here displayed are the initial ca-
pacity, the capacity of the second check-up, the capacity during the constant current charging phase,

the mean temperature in Celsius during the check-up, and two discharge pulse resistance values at 1C
and 50 % state-of-charge at 2 and 10 seconds. For this evaluation, the 1C capacity is used, so they are
slightly varying from the values depicted in the capacity vs. cycles plots in Baumhofer et al. [9].

The first discharge capacity shows values between 1.76 and 1.79 Ah increasing to a spread of 1.70 to 1.75
Ah in the second check-up. There is a correlation visible between the first and second check-ups, with
higher first capacities also trending to higher second capacities. But some of the lowest values of the
second capacity show comparably high first capacity values. So, the first capacity captures the general
trend, but higher aging rates cannot be captured, resulting in differences in the second capacity. The ca-
pacity from the constant current charge shows no clear trend compared to the first or second capacity. A
small temperature dependence can be seen between test temperature and resistance, with higher temper-
atures leading, in general, to lower resistance values as is expected. The mean temperature of the whole
check-up ranges from 26.5 °C to 28.5 °C and the other values do not show an influence of temperature in
the depicted range.
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Figure 3: Correlation of the following initial parameters of dataset Baumhofer et al. [9]: Initial capacity, second capacity
value, charge capacity during the constant current phase, mean temperature during the check-up and 2 sec and 10 sec
pulse resistances at 1C, 50 %SOC. All values are determined within the check-up procedure.

6.2 Pulse Resistance

The pulse resistance values of varying check-ups shall be investigated more in detail using a heatmap.
To illustrate its content, first, a subset of the values is depicted in Figure 4a. Here three different pulse
resistance values are shown, and all values over the whole lifetime of all cells correlated. The correlation
coefficient for each pairing is given in the lower-left corner as part of the scatter plots. In the next step,
Figure 4 shows the same correlation but as a heat map. Each resistance is shown once on the x-axis and
on the y-axis, and the correlation coefficient for each pairing is given as a color code at the intersection
and a legend at the side. A bright value depicts a good correlation between two pulse resistances, a dark
value shows poor or no correlation.
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Figure 4: How to read the heat map.

The correlation in Figure 5 includes values from each check-up over the whole lifetime of all cells of the
Baumhofer-2014 dataset. The labels are named in the following way: Res is short for resistance, CHA
for charge pulse and DCH for discharge pulse, next to the current as a C-rate, a leading zero indicates a
fraction, so 025 indicates 0.25C, afterwards the pulse length either 2 or 10 seconds and last the state-of-
charge in percent. Concluding ResCHA1C2sec30 is a charge pulse resistance with a current of 1C after
2 seconds at a state-of-charge of 30 %. Overall, the correlation of pulse resistances within this dataset is
very high, with lowest values still above 0.98. Pulse length, in this case, an evaluation at 2 and 10 sec-
onds, correlates more than 0.995 in all operating conditions except the charge pulse resistance at 80 %
SOC. At an aged condition, charge pulses will approach the upper cell voltage limit faster. Neverthe-
less, the correlation still is around 0.99 and it can be assumed that differences in pulse lengths are min-
imal and, therefore, different pulse lengths can be used for a comparison of aging trends. The highest
and lowest current rates do not correlate as well. One explanation is that the voltage response for low
current rates is also smaller, leading to a lower signal-to-noise ratio. In addition, high currents excite
different chemical and physical processes, which can develop differently over the lifetime. The state-of-
charge levels compared in this dataset set at 30 %, 50 % and 80 % highly correlate. To analyse the aging
trend while limiting the time of a check-up procedure, one of these charge levels would give similar con-
clusions to three charge levels. But it can also be sensible for a more detailed analysis to include other
SOCs since resistance also has a SOC dependence, especially at low and high SOCs [24]. In addition to
pulse resistances at defined state-of-charges, other resistances can be calculated without any additional
measurements. Each current, either charge or discharge, generates a voltage change to determine a resis-
tance value. For example, the first 10 seconds of a discharge can be handled as a pulse. Or, as Rumberg
et al. [25] suggest, the resistance can be calculated after a discharge, with the last cell voltage measure-
ment during discharge and the voltage the cell relaxes to. These values are without increased cost and
have an additional benefit of tracking changes at the extremes of the voltage curve.
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Figure 5: Heatmap of correlation of different pulse resistances of 30, 50 and 80 % of Baumhofer-2014 dataset. The color of
the heatmap shows the correlation coefficient of each pairing in the matrix.

7 Test Condition Influence

Figure 6 shows the influence of different test conditions on the correlation of health indicators. For these
three values, the discharge CapDCH1 capacity, the Ah throughput during constant current charge CAPC-
CCHA1 and one pulse resistance value were used. The test conditions all used a current of 1C but were
cycled with different cycle depths and mean state-of-charge and with one cell each. The upper and lower
SOC during cycling is shown in the legend. While the discharge and charge capacity show a strong cor-
relation, slight differences are already visible for the different test conditions. When substituting health
indicators for ones that are easy to measure, the relation must be independent of the history of prior cy-
cling. This, unfortunately, cannot be observed, showing different resistance to capacity relations depend-
ing on the cycling condition. For higher cycling depths, capacity degrades quicker compared to the re-
sistances in this dataset. Discharge and charge capacity show a high correlation and can likely be sub-
stituted for an aging analysis if one is not available. For the resistance capacity correlation, this is not
the case, with clear differences visible for the different test conditions. For example, cycling from 0-100
% shows the highest degradation of capacity in relation to the resistance measured. At around 35 Ah
remaining discharge capacity, the pulse resistance is still below 2 m{2, while cells from other test condi-
tions already show a pulse resistance of up to 4 mf2. When the aging condition triggers different aging
regimes, the correlation will not be the same for those conditions. Similar results for different aging con-
ditions but less pronounced are reported by Schuster et al. [26].
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Figure 6: Correlation of discharge capacity, charge capacity and pulse resistance over cycle aging for dataset Schéneberger-
2019. Color represents different test conditions of cycle test with lower and upper SOC during cycling shown in the legend.
The upper and lower triangles show the same data points.

In addition to cycle tests, calendar aged cells with a path dependency of the correlation are shown in
Figure 7. Three cells were tested for each test condition and aged at 40 °C, except for one test at 25 °C
and one at 60 °C, both at 66 % SOC. At 40 °C, eight different SOCs were tested, ranging from 10-100
%. Just as the cycle aged cell 3 values, the discharge CapDCH1 capacity, the Ah trough put during con-
stant current charge CAPCCCHAT1 and one pulse resistance value were used in the comparison. Similar
to cycle aging, both capacity values strongly correlate with the 60 °C cells standing out, showing gen-
erally lower constant current charge capacities at similar discharge capacity levels. For cells at 60 °C, a
disproportional increase of resistance can be seen. The highest SOC levels, 90 % and 100 %, also have
higher capacity loss relative to the resistance increase.
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Figure 7: Correlation of discharge capacity, charge capacity and pulse resistance over calendar aging for dataset
Schonberger-2019. color represents different test conditions of calendar test with SOC shown in the legend. The tem-
perature of the test is 35 °C if not stated otherwise in legend. The upper and lower triangles show the same data points.
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8 Chemistry Influence

Figure 8 is based on the open dataset from Preger et al. [19] where 3 types of cells with different cath-
ode chemistry are compared. In this set, the temperature for check-up procedures was kept at the same
level as the cycling temperature. Since there is an influence of temperature on capacity and resistance,
only cells cycled at 25 °C are considered. Each check-up procedure consists of 3 constant current con-
stant voltage charges with 0.5C up to the end of charge voltage and a discharge with 0.5C. The correla-
tion shows the discharge capacity values, the ampere-hours during the constant current phase of the first
cycle, the ampere-hours during the constant voltage phase of the first cycle, the mean temperature dur-
ing the first cycle and a resistance value. The resistance is calculated with the difference of the relaxed
voltage and 10 seconds into the discharge phase of the first cycle. Overall the discharge capacity from
the three cycles show a high correlation, with less information with additional reference cycles.
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9 Conclusion

Additional health indicators can be used to better understand a battery’s state of health and define bat-
teries as they age. In this study, we demonstrate the advantages of methodically examining numerous re-
lationships among the primary health indicators. Other health markers also show cell-to-cell variance, in
addition to capacity values, which are frequently illustrated in literature. Additionally, cell-to-cell vari-
ation shown in capacity values can exhibit strong correlations with other indicators’ cell-to-cell varia-
tion while also displaying aging path-dependent correlation behavior. A comparison between the orig-
inal cell-to-cell variance and aging tests was also made. Correlations for several cell types (cylindrical,
pouch) and chemistries are included in this paper. But even so, the availability of the data constrained
this research, and it should be repeated as soon as sizable open-source datasets are made available to
further our understanding of, say, variations in cell chemistries or form factors. Understanding the corre-
lations of various health indicators can enable additional acceptable highly correlated metrics if perform-
ing reference performance tests is not practicable. Additionally, ”free” measurements can be utilized to
improve the accuracy of battery diagnostics. One example is the computation of resistance from an ex-
isting voltage drop in a battery management system. Although single cell testing was the main emphasis
of this article, modules or packs can also profit from understanding the correlation of health indicators,
particularly in cases where the structure of the pack forbids single cell measurements.
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